U N I V E R S I T Y

Abstract
In this project, we are interested in the group $\operatorname{Mon}(\beta)=$ im $\left[\pi_{1}\left(\mathbb{P}^{1}(\mathbb{C})-\right.\right.$ $\left.\{0,1, \infty\}) \rightarrow S_{N}\right\}$ called the monodromy group. We layout a quich algonithm to compute these groups by solving a system of ordinary differ ential eeuations and present visualizations of their roupp actions on the sphere.
This work is part of PRiME (Purdue Research in Mathematics Expe rience) with Chineze Christopher. Robert Dicks, Gina Ferolito, Josepl Sauder, and Danika Van Niel with assistance by Edray Goins and Abhishek Parab.

Background
Let X be a compact, connected Riemann surface. There are two examples of interest:

- The Sphere: the projective line \mathbb{P}^{1} may be embedded into the projective plane using the map $\mathbb{P}^{1} \rightarrow \mathbb{P}^{2}$ which sends $\left(x_{1}: x_{0}\right) \mapsto\left(x_{1}: 0: x_{0}\right)$, so that this curve corresponds to the zeroes of the polynomial $f(x, y)=$
The set of complex points, namely $X=\mathbb{P}^{1}(\mathbb{C}) \simeq S^{2}(\mathbb{R})$, a sphere.
- Elliptic Curves: an elliptic curve E is a nonsingular projective variety corresponding to the zeroes of the form
$f(x, y)=\left(y^{2}+a_{1} x y+a_{3} y\right)-\left(x^{3}+a_{2} x^{2}+a_{4} x+a_{6}\right)=0$.

Examples of elliptic curves

The surface defined by an Elliptic curve over the complex numbers is equivalent to a torus.

Belyǐ Map: a Belyǐ Map is a rational function $\beta: \mathrm{X} \rightarrow \mathbb{P}^{1}(\mathbb{C})$ with at most 3 critical values, which we assume to be $\{0,1, \infty\}$.
Since X may be viewed as the set of zeroes of a single polynomial $f(x, y)$, and $q(x, y)$.
Some examples include:
$\beta(x, y)=\frac{y+1}{2} \quad$ for $E: y^{2}=x^{3}+1$
$\beta(x, y)=\frac{\left(y-x^{2}-17 x\right)^{3}}{2^{14} y}$ for $E: y^{2}+15 x y+128 y=x^{3}$
$\beta(x, y)=\frac{(x-5) y+16}{32}$ for $E: y^{2}=x^{3}+5 x+10$

Visualizing Monodromy Groups of Torodial Belyī Pairs

Chineze Christopher

Purdue Research in Mathematics Experience (PRiME)

Future Work

$$
\begin{aligned}
& \left\{\begin{aligned}
\beta\left(\widetilde{\gamma}_{0}^{(i)}(t)\right) & =y_{0} e^{2 \pi \sqrt{ }-1} t \\
\widetilde{\gamma}_{0}^{(i)}(0) & =P_{i}
\end{aligned}\right. \\
& \left\{\begin{aligned}
\beta\left(\tilde{\gamma}_{1}^{(i)}(t)\right) & =1+\left(y_{0}-1\right) e^{2 \pi \sqrt{-1} t} \\
\widetilde{\gamma}_{1}^{(i)}(0) & =P_{i}
\end{aligned}\right.
\end{aligned}
$$

There exist permutations $\sigma_{0}, \sigma_{1}, \sigma_{\infty} \in S_{N}$ such that $\widetilde{\gamma}_{0}^{(i)}(1)=P_{\sigma_{0}(i)}$, $\widetilde{\gamma}_{1}^{(i)}(1)=P_{\sigma_{1}(i)}$, and $\sigma_{\infty}=\sigma_{1}{ }^{-1} \circ \sigma_{0}{ }^{-1}$ for $i=1,2, \ldots, N$. Then Mon $(\beta)=\left\langle\sigma_{0}, \sigma_{1}, \sigma_{\infty}\right\rangle$ is called the monodromy group of β. It is a transitive subgroup of S_{S}

Algorithm
The paths $\widetilde{\gamma}_{0}^{(i)}, \widetilde{\gamma}_{1}^{(i)}:[0,1] \rightarrow X$ must also satisfy the system of ordinary
differential equations differential equations

After solving these equations to suitable numerical precision, we choose $\sigma_{0}, \sigma_{1}, \sigma_{\infty} \in S_{N}$ as those permutations such that

- $\sigma_{0}(i)=j$ is that index where the difference $\left|P_{j}-\widetilde{\gamma}_{0}^{(i)}(1)\right|$ is least for $i=1,2, \ldots, N$;
- $\sigma_{1}(i)=j$ is that index where the difference $\left|P_{j}-\widetilde{\gamma}_{1}^{(i)}(1)\right|$ is least for
$i=1,2, \ldots, N ;$ and $i=1,2, \ldots, N$; and
- $\sigma_{\infty}=\sigma_{1}{ }^{-1} \circ \sigma_{0}$

There is preliminary software which partially does this in Mathematica; see figure below for a screenshot.

Fix $y_{0} \in \mathbb{P}^{1}(\mathbb{C})$ different from 0,1 , and ∞. For each P_{i} in the collection of affine points
$\beta^{-1}\left(y_{0}\right)=\left\{(x: y: 1) \in X \left\lvert\, \begin{array}{r}f(x, y)=0 \\ p(x, y)-y_{0} q(x, y)=0\end{array}\right.\right\}=\left\{P_{1}, P_{2}, \ldots, P_{N}\right\}$ there exist unique paths $\widetilde{\gamma}_{0}^{(i)}, \widetilde{\gamma}_{1}^{(i)}:[0,1] \rightarrow X$ satisfying
figure below for a screenshot.

$$
\begin{aligned}
& \left\{\begin{array}{l}
\left.\frac{d \tilde{\gamma}_{\gamma}^{(i)}}{d t}=\frac{q}{q\left(\frac{\partial f}{\partial x} \frac{\partial p}{\partial y}-\frac{\partial f}{\partial y} \frac{2 p}{\partial x}\right)-p\left(\frac{\partial f}{\partial x} p q\right.} \frac{\partial q}{\partial y}-\frac{\partial f}{\partial y} \frac{\partial q}{\partial x}\right) \\
\widetilde{\gamma}_{0}^{(i)}(0)=P_{i}
\end{array}\right. \\
& \left\{\begin{array}{l}
\frac{d \widehat{\gamma}_{1}^{(i)}}{d t}=\frac{2 \pi \sqrt{-1}(p-q) q}{q\left(\frac{\partial f}{\partial x} \frac{\partial p}{\partial y}-\frac{\partial f}{\partial y} \frac{\partial p}{\partial x}\right)-p\left(\frac{\partial f}{\partial x} \frac{\partial q}{\partial y}-\frac{\partial f}{\partial y} \frac{\partial q}{\partial x}\right)}\left[\begin{array}{c}
-\frac{\partial f}{\partial y} \\
+\frac{\partial f}{\partial x}
\end{array}\right]
\end{array}\right. \\
& \tilde{\gamma}_{1}^{(i)}(0)=P_{i}
\end{aligned}
$$

Say that $X=\mathbb{P}^{1}(\mathbb{C}) \simeq S^{2}(\mathbb{R})$
-The rational function $\beta(z)=z^{N}$ is a Belyy̆ map of degree N. The monodromy group has the generators

σ_{0}	$=(12 \cdots N)$
σ_{1}	$=(1)$
σ_{∞}	$=(N \cdots 21)$
oup is $\operatorname{Mon}(\beta)=\left\langle\sigma_{0}, \sigma_{1}, \sigma_{\infty}\right\rangle=Z_{N}$.	

Examples on the Sphere

$$
\begin{aligned}
\sigma_{0} & =\left(\begin{array}{llll}
1 & \cdots & N
\end{array}\right) \\
\sigma_{1} & =(1) \\
\sigma_{\infty} & =\left(\begin{array}{llll}
N & \cdots & 1
\end{array}\right)
\end{aligned}
$$

Hence the monodromy group is $\operatorname{Mon}(\beta)=\left\langle\sigma_{0}, \sigma_{1}, \sigma_{\infty}\right\rangle=Z_{N}$
-The rational function $\beta(z)=(1-2 z)^{3}(1+3 z)^{2}$ is a Belyı̆ map of degree $\mathrm{N}=5$. According to our Mathematica code, the monodromy group has the generators

$$
\begin{aligned}
\sigma_{0} & =\binom{1}{1}(345) \\
\sigma_{1} & =\left(\begin{array}{ll}
2 & 3
\end{array}\right) \\
\sigma_{\infty} & =\left(\begin{array}{ll}
1 & 2
\end{array} 543\right)
\end{aligned}
$$

Hence the monodromy group is $\operatorname{Mon}(\beta)=\left\langle\sigma_{0}, \sigma_{1}, \sigma_{\infty}\right\rangle=S_{5}$.

- The rational function $\beta(z)=-(z-1)\left(2 z^{2}+3 z+9\right)^{3} / 729$ is a Belyi map of degree $N=7$. According to our Mathematica code, the monodromy group has the generators

$$
\begin{aligned}
\sigma_{0} & =(153)(246) \\
\sigma_{1} & =(374) \\
\sigma_{\infty} & =(1326475)
\end{aligned}
$$

Hence the monodromy group is $\operatorname{Mon}(\beta)=\left\langle\sigma_{0}, \sigma_{1}, \sigma_{\infty}\right\rangle=A_{7}$.

Examples on the Torus

Say that $X=E(\mathbb{C}) \simeq T^{2}(\mathbb{R})$.

- Consider $E: y^{2}=x^{3}+1$. The rational function $\beta(x, y)=(y+1) / 2$ is a Belyı̆ map of degree $N=3$. According to our Mathematica code, the monodromy group has the generators

$$
\begin{aligned}
\sigma_{0} & =\left(\begin{array}{llll}
1 & 2 & 3
\end{array}\right) \\
\sigma_{1} & =\left(\begin{array}{ll}
1 & 2
\end{array}\right) \\
\sigma_{\infty} & =\left(\begin{array}{ll}
1 & 2
\end{array}\right)
\end{aligned}
$$

Hence the monodromy group is $\operatorname{Mon}(\beta)=\left\langle\sigma_{0}, \sigma_{1}, \sigma_{\infty}\right\rangle=A_{3}$.
Consider $E: y^{2}=x^{3}-x$. The rational function $\beta(x, y)=x^{2}$ is a
Belvi map of degree $N=4$. According to our Mathematica code, the monodromy group has the generators

$$
\begin{aligned}
\sigma_{0} & =\left(\begin{array}{ll}
1 & 3) \\
\sigma_{1} & (24)
\end{array}\right) \\
\sigma_{1} & \left(\begin{array}{ll}
1 & 2
\end{array} 34\right) \\
\sigma_{\infty} & =\left(\begin{array}{ll}
1 & 2
\end{array} 34\right)
\end{aligned}
$$

Hence the monodromy group is $\operatorname{Mon}(\beta)=\left\langle\sigma_{0}, \sigma_{1}, \sigma_{\infty}\right\rangle=Z_{4}$.
Consider E : $y^{2}=x^{3}+x^{2}+16 x+180$. The rational function $\beta(x, y)=\left(x^{2}+4 y+56\right) / 108$ is a Belyi map of degree $N=4$. According
to our Mathematica code, the monodromy group has the generators

$$
\left.\begin{array}{rl}
\sigma_{0} & =\left(\begin{array}{ll}
1 & (23
\end{array}\right) \\
\sigma_{1} & =\left(\begin{array}{ll}
1 & 4
\end{array} 23\right.
\end{array}\right)
$$

Hence the monodromy group is $\operatorname{Mon}(\beta)=\left\langle\sigma_{0}, \sigma_{1}, \sigma_{\infty}\right\rangle=S_{4}$.
in Mathematica, which we plan to port to matica solves these systems of differential equations very quickly, it cannot determine the structure of groups very well. On the other hand, Sage can determine the structure of groups, but cannot solve systems
of differential equations when complex numbers are involved.

References

[1] Antoine D. Coste, Gareth A. Jones, Manfred Streit, and Jürgen Wolfart, "Generalised Fermat Hypermaps and Galois Orbits". Glasgow Math Journal, Vol. 51 (2): 289-99. 2009.
[2] John E. Cremona and Thotsaphon Thongjunthug, "The complex AGM, periods of elliptic curves over \mathbb{C} and complex elliptic logarithms https://arxiv.org/abs/1011.0914
[3] Noam Ellies, "Elliptic Curves in Nature"
http://www. math. harvard. edu/~elkies/nature.html
[4] Ernesto Girondo and Gabino González-Diez, "Introduction to Compact Riemann Surfaces and Dessins d'Enfantss"' Cambridge University Press (London Mathematical Society Student Texts, Vol. 79). 2012
[5] Mark van Hoeij and Raimundas Vidunas, "Algorithms and differential telations for Bely1 functions.
ttps://arxiv. org/abs/1305.7218
[6] Mark van Hoeij and Raimundas Vidunas, "Computation of Genus 0 Belyy functions." Mathematical software-ICMS 2014: 92-98
[7] Lily S. Khadjavi and Victor Scharaschkin, "Belyi Maps and Elliptic Curves". Preprint.
ttp://myweb.1mu.edu/lkhadjavi/BelyiElliptic.pdf
[8] Michael Klug, Michael Musty, Sam Schiavone, and John Voight, "Numerical calculation of three-point branched covers of the projective line https://arxiv org/abs/1311 2081

9] Gerhard Ringel, "Das Geschlecht des vollständigen paaren Graphen. Ablanandungen ads den 130 . ität Hamburg. Vol. 28: 139-150. 1965
[10] Joseph H. Silverman, "The Arithmetic of Elliptic Curves." Graduate Texts in Mathematics (Springer). 2009
[11] Jeroen and Sijsling and John Voight, "On Computing Belyy Maps. https://arxiv.org/abs/1311.2529
12] Leonardo Zapponi, "On the Bely̌̆ Degree(s) of a Curve Defined Over a Number Field,"
ttps://arxiv.org/abs/0904.0967
Acknowledgements

- Dr. Edray Herber Goins
- Abhishek Parab
- Dr. Gregery Buzzard / Department of Mathematics

College of Science

- National Science Foundation (DMS-1560394)

